Acta Cryst. (1960). 13, 161

The crystal structure and lattice parameters of some rare earth mono-seleno oxides. By HARRY A. Eick, Kedzie Chemical Laboratory, Michigan State University, East Lansing, Michigan, U.S.A.

(Received 6 July 1959)

The following study was undertaken when no information could be found either on the preparation or crystal structure of samarium mono-seleno oxide.

Rare earth sesquioxides of 99.9% or greater purity were reacted with H₂Se gas diluted with hydrogen and helium at temperatures varying between 900 and 1130 °C. Attempts to grow single crystals by extended heating (2–4 weeks) failed when only a slight increase in particle size was noted and partial decomposition of the sample resulted. Monophasic samples of Pr₂O₂Se were analyzed for selenium by direct analysis (obs.: 19·0%, calc.: 19·7%) and by oxidation of the selenide to the hexagonal sesquioxide in a 10⁻³ mm. oxygen pressure (obs.: 20% Se). X-ray intensity data were obtained on a sample of

Table 1. Interplanar spacings and intensity values of La₂O₂Se

	d Value		Intensity	
		Calculated		Calculated
hkl	(Å)	(Å)	(Å)	(Å)
001		$7 \cdot 13$	_	6
002	3. 58	3.56	166	138
100	3.56	3.52	115	89
101	3.13	3.16	1550	1616
102	2.50	2.50	646	633
003	$2 \cdot 37$	2.38	139	158
110	2.03	2.04	560	588
103	1.97	1.97	3 08	260
111		1.96	_	1
004		1.78		32
112	1.77	1.77	140	129
200		1.76		14
201	1.71	1.71	250	254
104	1.59	1.59	120	137
202	1.58	1.58	154	150
113	1.55	1.54	231	239
005		$1 \cdot 42$		10
203	1.417	1.415	85	81
114	1.342	1.340	76	71
210		1.332		10
105	1.323	1.321	93	79
211	1.310	1.309	200	197
204	1.255	1.253	32	59
212	1.251	1.248	137	130
006	_	1.187	_	0
300	1.177	1.175	83	78
115	1.170	1.167	46	31
213	1.164	1.162	100	77
301	_	1.159		0
106	1.128	1.125	82	73
302	1.118	1.116	21	27
205	1.110	1.108	46	45
214	1.069	1.067	76	76
303	1.055	1.053	74	70
116		1.026		2
220	1.020	1.017	91	60
007		1.018		16

 ${\rm La_2O_2Se}$ with a Norelco diffractometer equipped with a proportional counter. Copper radiation ($\lambda \alpha_u = 1.5418$; $\lambda \alpha_1 = 1.54050$) was used exclusively. Structure-factor calculations were carried out on digital computers using $I \propto j L P F^2$.

The rare earth mono-seleno oxides are isostructural with the corresponding mono-thio oxides (Zachariasen, 1949). The space group is $D_{3d}^2 - P\overline{3}m$, and the unit cell which contains one molecule has a selenium atom at (0, 0, 0), two metal atoms at $\pm (\frac{1}{3}, \frac{2}{3}, z_1)$, where $z_1 = 0.29$, and two oxygen atoms at $\pm (\frac{1}{3}, \frac{2}{3}, z_2)$, where $z_2 \approx 0.62$. The value of z_1 is probably accurate to within ± 0.01 . In Table 1 the observed and calculated d values and relative intensities of La₂O₂Se are tabulated. Some interatomic distances are La–O, 2.42 Å; O–O, 2.90 Å; and La–Se, 3.08 Å.

Table 2. Lattice parameters and calculated densities of some rare earth mono-seleno oxides

	a (Å)	c (Å)	ϱ (g.cm. ⁻³)
La_2O_2Se	4.07_{0}	$7 \cdot 12_{4}$	$6 \cdot 32$
Pr_2O_2Se	4.00_{9}	7.03_{1}^{-}	6.72
Nd_2O_2Se	3.97_{5}	6.98_{5}^{-}	6.95
$\mathrm{Sm_2O_2Se}$	3.91_{6}	6.91_{2}	$7 \cdot 46$
Gd_2O_2Se	3.87_{3}	6.85_{4}^{-}	7.94
$\mathrm{Ho_2O_2Se}$	3.807	6.76_{6}^{-}	8.65
$\mathrm{Er_2O_2Se}$	3.79_{2}	6.74_{3}	8.81
$\mathbf{Yb_2O_2Se}$	$3 \cdot 76_1$	6.69^{4}	9.25

Estimated error: $(a: \pm 0.02)$, $(c: \pm 0.02)$.

Table 2 lists the lattice parameters of eight members of the rare earth series. A plot of the a and c parameters versus the ionic radii of the plus 3 ion as determined from the sesquioxides and trichlorides (Templeton & Dauben, 1954) yields a fairly smooth curve, indicative of an 'ionic' type of bonding. Good high angle X-ray photographs were obtained for the lanthanum, praseodymium, and neodymium compounds. The others produced diffuse lines in the region of $\theta > 30^{\circ}$. Lattice parameters were obtained from the lines considered most accurate. Checks on various films indicated the overall agreement was within ± 0.02 Å and this value is listed as the error.

The author wishes to thank Prof. Paul W. Gilles of the University of Kansas for making the X-ray diffractometer and IBM digital computer available and the Michigan State University computer laboratory for the use of their facilities.

References

TEMPLETON, D. H. & DAUBEN, C. H. (1954). J. Amer. Chem. Soc. 76, 5237.ZACHARIASEN, W. H. (1949). Acta Cryst. 2, 60.